4.3 Calcolo di probabilità relative alla distribuzione normale

Tale procedimento è illustrato in dettaglio in due video (paragrafi 4.1 e 4.2) che ti consigliamo di esaminare. Ne proponiamo qui una sintesi.

Consideriamo una generica v.a. normale X di media μ e varianza σ^2 . Dati due valori reali a,b con a < b, vogliamo calcolare

$$P(a \le X \le b)$$

Come visto nell'osservazione del paragrafo 3.1, tale probabilità non si può però calcolare mediante le formule "usuali".

Un modo per risolvere la questione è ricorrere a tavole che contengono valori (approssimati) di probabilità. Più precisamente essi sono relativi alla v.a. normale con media 0 e varianza 1, cioè alla v.a. standard Z. Per poter usare le tavole occorre dunque prima passare da valori di X a valori di Z.

Come fare? Proviamo a ragionare in termini di variabili aleatorie:

- 1. per avere $media^a$ 0, trasformiamo X nella nuova variabile $X \mu$
- 2. per avere $varianza^b$ 1, trasformiamo $X \mu$ nella nuova variabile $\frac{X \mu}{\sigma}$

Pertanto, ogni v.a. normale X si può ricondurre 17 alla v.a. standard Z mediante la trasformazione

$$Z = \frac{X - \mu}{\sigma}$$

Per risolvere il problema iniziale consideriamo dunque i valori trasformati di a e b secondo tale relazione, ossia

$$a' = \frac{a - \mu}{\sigma}$$
 e $b' = \frac{b - \mu}{\sigma}$

Allora la probabilità richiesta si può così esprimere a :

$$P(a \le X \le b) = P(a' \le Z \le b')$$

 $^a\mathrm{Tale}$ risultato si può intuire per la costruzione fatta e si può comunque dimostrare formalmente (paragrafo 4.5).

 $[^]a$ Come la media della v.a. Z.

 $^{^{}b}$ Come la varianza della v.a. Z.

 $^{^{-17}}$ Nel paragrafo 4.4 discutiamo una dimostrazione formale dei due fatti enunciati. Ossia che la media e la varianza di $\frac{X-\mu}{\sigma}$ sono rispettivamente 0 e 1.

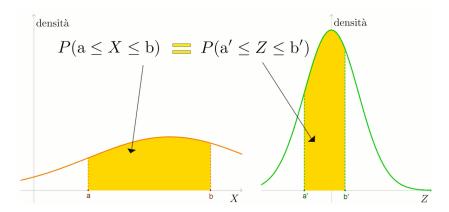


Figura 9: Vediamo qui un'interpretazione grafica, mediante le aree, dell'uguaglianza $P(a \le X \le b) = P(a' \le Z \le b')$.

Resta da determinare il valore di $P(a' \le Z \le b')$.

Possiamo ora utilizzare le tavole. Esse contengono valori approssimati di probabilità del tipo

$$P(Z \le k)$$
 dove k è un valore positivo

Per usare le tavole, si procede come suggerisce la figura 10 per l'esempio $P(Z \le 1, 23)$.

Se invece occorre calcolare probabilità su altri intervalli, l'idea è di esprimere quanto richiesto in termini di probabilità del tipo $P(Z \leq k)$ con k positivo. Per far ciò, si possono utilizzare la simmetria della densità normale f e le proprietà degli integrali, interpretandole magari sul grafico di f in termini di aree.

Ad esempio, per calcolare $P(0, 98 \le Z \le 1, 74)$, che è una probabilità della forma in esame, si può procedere come illustrato in figura 11.

¹⁸Dato che quelle sono le probabilità che si trovano sulle tavole.

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Figura 10: Lettura sulla tavola del valore approssimato di probabilità per k=1,23. Quindi $P(Z\leq 1,23)\simeq 0,8907$.

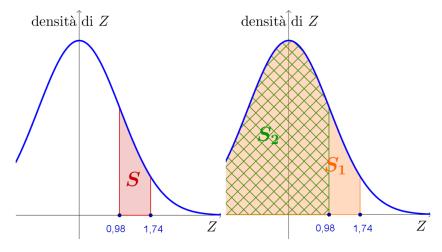


Figura 11: Area(S) = Area (S_1) - Area (S_2) $\Longrightarrow P(0,98 \le Z \le 1,74) = P(Z \le 1,74) - P(Z \le 0,98)$.