Aspetti di calcolo $\mathbf{5}$

5.1Un esempio di calcolo -attività-

Il calcolo di probabilità relative alla v.a. normale è illustrato in dettaglio in due video (paragrafi 4.1 e 4.2) che ti consigliamo di esaminare prima di risolvere l'esercizio.

Sia X la v.a. normale di media $\mu = 5$ e varianza $\sigma^2 = 9$. Calcola $P(3, 5 \le X \le 11)$, ossia la probabilità che X sia compresa tra 3,5 e 11.

Risoluzione

Procediamo seguendo il ragionamento visto dettagliatamente nei video e in sintesi nel paragrafo 4.3:

1. Standardizziamo la v.a. X mediante la trasformazione $Z = \frac{X-\mu}{\sigma}$. Pertanto i nuovi estremi di variabilità di Z diventano²⁰ -0,5 e 2 e vale

$$P(3, 5 \le X \le 11) = P(-0, 5 \le Z \le 2)$$

- 2. Per determinare la probabilità in Z, ricordiamo che le tavole forniscono valori della forma $P(Z \leq k)$ con k positivo. Perciò esprimiamo $P(-0, 5 \leq Z \leq 2)$ in termini di probabilità di tale forma:
 - per l'additività dell'integrale sul dominio di integrazione²¹

$$P(-0, 5 \le Z \le 2) = P(Z \le 2) - P(Z \le -0, 5)$$

• per la simmetria del grafico della densità normale standard²²

$$P(Z \le -0, 5) = P(Z \ge 0, 5) = 1 - P(Z \le 0, 5)$$

In sintesi le ultime uguaglianze ci dicono che

$$P(-0, 5 \le Z \le 2) = P(Z \le 2) - 1 + P(Z \le 0, 5)$$

3. Andiamo ora a leggere sulle tavole i valori di probabilità richiesti

$$P(Z \le 2) \simeq 0,9772$$
 e $P(Z \le 0,5) \simeq 0,6915$

Possiamo così concludere che

$$P(3,5 \le X \le 11) \simeq 0,9772 - 1 + 0,6915 \\ \simeq 0,67$$

²²Nella seconda uguaglianza passiamo all'insieme complementare.

²⁰Usando le notazioni del paragrafo 4.3 e dei video, stiamo dicendo che a = 3, 5 b = 11 e a' = -0, 5 b' = 2. ²¹Precisamente $\int_{-0,5}^{2} g(x) dx = \int_{-\infty}^{2} g(x) dx - \int_{-\infty}^{-0,5} g(x) dx$ dove g è la densità di Z.

Osservazione. Nel punto 2. abbiamo fatto ricorso alle proprietà degli integrali e alla simmetria del grafico della funzione densità normale g. E' espressivo (e d'aiuto) interpretare tali probabilità in termini di *aree* sul grafico di g.

5.2 Valori di probabilità notevoli -attività-

Di solito le tavole della normale standard non riportano valori di Z superiori²³ a 4. Perché? L'attività seguente suggerirà la risposta.

 $^{^{23}\}mathrm{Anzi},$ le tavole considerate nei video non superano il valore 3.

Risoluzione

Mostriamo per esempio²⁴ la prima approssimazione. Vogliamo valutare la probabilità che la variabile X si discosti dalla media μ di al più una quantità pari a σ .

Per determinare questo valore di probabilità seguiamo il procedimento mostrato nel paragrafo 4.3:

1. standardizziamo la variabile \boldsymbol{X}

$$P(\mu - \sigma \le X \le \mu + \sigma) = P(-1 \le Z \le 1)$$

2. per la simmetria del grafico della densità normale e per le proprietà degli integrali si ha

$$P(-1 \le Z \le 1) = 2P(0 \le Z \le 1) = 2(P(Z \le 1) - P(Z \le 0))$$

3. ricorrendo alle tavole, otteniamo

$$2 \cdot (P(X \le 1) - P(Z \le 0)) \simeq 2 \cdot (0,8413 - 0,5) \simeq 0,683$$

In conclusione, la probabilità che la v.a. normale X assuma valori tra $\mu-\sigma$ e $\mu+\sigma$ è quasi il 70%.

 $^{^{24}\}mathrm{Analogamente}$ è possibile calcolare gli altri valori di probabilità notevoli.

5.3 Valori di probabilità mediante il foglio elettronico

Oltre alle tavole, un altro possibile strumento a cui ricorrere per determinare valori (approssimati) di probabilità è il foglio elettronico, ad esempio Excel.

Su **Excel** sono presenti infatti:

- la funzione *DISTRIB.NORM.ST.N*(*z*; *cumulativa*);
 - se cumulativo=VERO, la funzione restituisce il valore di probabilità $P(Z \le z)$, dove Z è la v.a. normale standard;

se cumulativo=FALSO, dà il valore g(z) dove g è la densità di Z.

	🚽 🤊 -	01 - 1∓			Cal	coliNormale	e - Microsof	t Excel			_	- 🗆	\times
F	ile	Home Inse	erisci Lay	out di pagini	a Formu	le Dati	Revision	e Visua	izza			∞ 🕜 🗆	er 23
	SOM	MA •	- (= × -<	∫f _≭ =DIS	TRIB.NORN	1.ST.N(*
	А	В	С	D DIS	TRIB.NORM	.ST.N(z ; cum	nulativa)	Н	I.	J	К	L	
1	vi.st.n(
2													=
3													
4													
5													
6													
7													
8													
14 4		oglio1 / Fo	glio2 / Fogl	io3 / 🔁 /									
Mo	difica									10	0% 🗩	1	-0 ";

• la funzione *DISTRIB.NORM.N*(*x*; *media*; *dev_standard*; *cumulativo*)

se cumulativo=VERO, la funzione restituisce il valore di probabilità $P(X \le x)$ dove X è la v.a. normale con $\mu = media$ e $\sigma = dev_standard$;

se cumulativo=FALSO, dà il valore f(x) dove f è la densità di X.

🔣 🛃 🍠 🕶 (°= - 🚽	CalcoliNormale - Microsoft		– 🗆 ×	
File Home Inserisci L	ayout di pagina Formule Dati Revisione	e Visualizza		v 🕜 🗆 🗗 XX
SOMMA 👻 💿 🗙	✓ f _≪ =DISTRIB.NORM.N(*
A B C	DISTRIB.NORM.N(x; media; dev_standar	d; cumulativo)	J K	L I
1 DRM.N(
2				=
3				
4				
5				
6				
7				
8				
H → → Foglio1 Foglio2 Fo	glio3 / 🖏			
Modifica			III III 100% —	

Nelle versioni che precedono Excel 2010, il nome è DISTRIB.NORM.ST.

Un ulteriore interessante strumento è Geogebra.

Questo software, infatti, permette di calcolare valori di probabilità (non solo relativi alla v.a. normale) come *integrali* della funzione densità.

Precisamente, inserita la funzione di densità (nella situazione in esame, una data densità normale²⁵), si digita nella barra di inserimento il comando che serve, in generale, per calcolare l'integrale²⁶ di funzioni. L'aspetto interessante è che, oltre a restituire il risultato numerico, Geogebra visualizza il sottografico della densità nell'intervallo di integrazione.

Tale strumento ti consente di controllare i procedimenti di calcolo relativi alla v.a. normale.

²⁵Comando Normale[<Media>, <Deviazione Standard>, <x>]. Questo comando, come gli altri, va digitato nella barra di inserimento. Una volta dato l'enter, viene visualizzato il grafico e l'espressione analitica della funzione che Geogebra indica ad esempio con f.

²⁶Comando Integrale[<Funzione>, <x iniziale>, <x finale>]; Geogebra indica con a (per esempio) il valore di tale integrale.